Nonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)

Authors

  • Marcel Prokopczuk Institute for Financial Markets, Leibniz University Hannover, Hannover, Germany.
  • Zahra Farshadfar Department of Economics, College of Humanities, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran (Corresponding Author)
Abstract:

Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear models. In the present study, we have reduced the number of variables and at the same time applied a nonlinear forecasting model. Oil prices have been used as predictors to predict return by application of a new artificial neural network nonlinear model named Deep Learning and its comparison with OLS and ANN methods. Results indicate that the applied non-linear model has higher accuracy compared to historical average model, OLS and ANN. It also indicates that out-of-sample prediction improvement does not always depend on high input variables numbers. On the other hand when using a smaller number of input variables, it is possible to improve this forecasting capability by changing the model and applying nonlinear models.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market

Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...

full text

Empirical Study on Stock Return Volatility in China's Stock Market

Wave of financial globalization and financial innovation has brought great changes of the international financial market, the traditional measuring method is not well adapt to these new changes, this requires the presence of the new analysis method. This article will link function to copulas connect theory is introduced into the financial analysis. In this paper, the author makes an empirical a...

full text

Data Revisions and Out-of-Sample Stock Return Predictability

Lettau and Ludvigson (2001) find that the consumption-wealth ratio (cay) constructed from revised data is a strong predictor of stock market returns. This paper shows that its out-ofsample forecasting power becomes substantially weaker if cay is estimated using information available at the time of forecast. The difference, which mainly reflects periodic revisions in consumption and labor income...

full text

Forecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)

The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series  predicted by using...

full text

Performance Analysis of Hybrid Forecasting Model In Stock Market Forecasting

This paper presents performance analysis of hybrid model comprise of concordance and Genetic Programming (GP) to forecast financial market with some existing models. This scheme can be used for in depth analysis of stock market. Different measures of concordances such as Kendall’s Tau, Gini’s Mean Difference, Spearman’s Rho, and weak interpretation of concordance are used to search for the patt...

full text

A Sentiment-based Hybrid Model for Stock Return Forecasting

Real-world financial time series often contain both linear and nonlinear patterns. However, traditional time series analysis models, such as ARIMA, hold the assumption that a linear correlation exists among time series values while leaving nonlinear relation into error terms. Based on financial theories, we argue that investor sentiment is the main contributor to nonlinear pattern of stock time...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 12

pages  1- 13

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023